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• Provide a systematic way to:
–Describe a wide range of AI hardware accelerators, e.g., deep neural 

networks (DNN), analog neural networks and (sparse) tensor, that 
vary in architecture, flexibility and technology 
– Evaluate different designs across a variety of metrics, including 

latency, bandwidth, area and energy
– Provide capability to make fair comparisons between different designs 

across a variety of workloads, with a holistic view of the entire system
– Rapidly explore the design space

Research Objectives2
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Compute In Memory (CiM) Accelerators
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Compute In Memory

• Reduce data movement by moving compute 
into memory

• Compute MAC with memory storage element 

• Analog Compute
– Activations, weights and/or partial sums are encoded 

with analog voltage, current, or resistance
– Increased sensitivity to circuit non-idealities
– A/D and D/A circuits to interface with digital domain

• Leverage emerging memory device technology

V1
G1

I1 = V1×G1
V2

G2

I2 = V2×G2

I = I1 + I2 
= V1×G1 + V2×G2

Image Source: [Shafiee, ISCA 2016]

Activation is input voltage (Vi)
Weight is resistor conductance (Gi)

Psum 
is output 
current
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• Devices: The components forming each memory cell (e.g., SRAM, DRAM, eNVM)

• Circuits: The components performing computation, analog/digital conversion, 
storage, data movement, and other actions

• Architecture: The organization of components into a larger system (e.g., the number 
of each component and how components are connected) 

• Workload: The DNN to be processed, which we model as a series of extended-
Einsum operations with tensors of varying shapes and values

• Mapping: The temporal and spatial scheduling of the workload onto the system

CiM Research Spans Full Stack

Need for modeling tool to enable apple-to-apple comparison 
and design space exploration à CiMLoop
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CiMLoop: A Flexible, Accurate, and Fast CiM Modeling Tool

Code available at 
https://github.com/mit-emze/cimloop

CiMLoop
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CiMLoop is built on the 
Timeloop [Parashar, ISPASS 2019] 
+ Accelergy [Wu, ICCAD 2019]
Infrastructure

[Andrulis, ISPASS 2024] Best Paper Award

7

https://github.com/mit-emze/cimloop


• Flexibility
– A flexible specification that lets users describe, model, and map workloads to both 

circuits and architecture

• Accuracy
– A data-value-dependent energy model that captures the interaction between 

DNN operand values, data representations, and analog/digital values
– Estimated values are within 8% of values reported for measured designs 

• Speed
– A fast statistical model to enable for constant runtime w.r.t. number of 

components and amortizes overhead across mappings
– Enables orders-of-magnitude speed up relative to other high-accuracy models

CiMLoop: A Flexible, Accurate, and Fast CiM Modeling Tool

[Andrulis, ISPASS 2024]
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Example: Apples-to-Apples Comparison

Macro
[Sinangil, JSSC 2021] [Wang, VLSI 2022] [Jia, JSSC 2020]

Technology Node 7nm 22nm 65nm
ADC Type 4b Flash 8b SAR 8b SAR

Memory Device 6T SRAM 8T SRAM + Capacitor 6T SRAM
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[Andrulis, ISPASS 2024]
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Example: Design Space Exploration

Explore array size (architecture) and DNN shapes (workload)

[Andrulis, ISPASS 2024]
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CiMLoop for Photonic Accelerator Modeling

Many similarities in design of CiM and Photonic accelerators à Can model with CiMLoop! 

Validation Design Space Exploration

[Andrulis, ISPASS 2024]
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Compute In Memory (CIM) Accelerators

ADC consumes significant energy
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RAELLA: Shifting Distributions to Reduce Input to ADC
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ADC Range

RAELLA: Shifting Distributions
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Center + Offset Weight Encoding Zero-Average Analog Results
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Encode weights such that they are 
represent as centers and offsets

Partition computation
Digital calculates high-resolution center operations

Analog calculates parallel offset operations

Encoding allows analog input to ADC to be 
smaller and closer to zero
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ADC Range

RAELLA: Shifting Distributions
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1. Shift the mean of each distribution 
to the center of the ADC range

2. If a computation produces large 
results, slice it into smaller pieces

RAELLA: Shifting Distributions
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Adaptive Weight Slicing: Slice Large-Result Computations

8b 8b· = 16b
Weight Input
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4b
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☺ Smaller Range L More ADC Converts (Energy)L More Memory (Area)
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1. Shift the mean of each distribution 
to the center of the ADC range

2. If a computation produces large 
results, slice it into smaller pieces

RAELLA: Shifting Distributions
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RAELLA: Shifting Distributions
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Out-of-range

Recover: Run 
multiple small 

input slices.

Out-of-range

Recover: Run 
multiple small 

input slices.

In-range with 
big slice
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• Makes analog operations produce low-resolution results
– 1024x reduction of input to ADC

• Enables more compute per ADC convert while using lower-resolution ADCs
– Improves energy efficiency by 3.9x and throughput by 1.8x compared to iso-area ISAAC

• Maintains DNN accuracy without changing DNN or retraining

RAELLA: Reshape Distributions of Input to ADC

Input to ADC
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• Designing DNNs for CiM may differ from 
DNNs for digital processors

• Highest accuracy DNN on digital 
processor may be different on CiM
– Accuracy drops based on robustness to non-

idealities

• Reducing number of weights is less 
desirable
– Since CiM is weight stationary, may be better 

to reduce number of activations
– CiM tend to have larger arrays à fewer 

weights may lead to low utilization on CiM

Designing DNNs for CiM

[Yang, IEDM 2019]
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• Enhance our prior work that allows for the whole system analysis at the 
architectural level combined with characterizations of each 
technological component of the system, to project the energy, speed, 
and cost of a proposed design with a new technology (including 
emerging devices and improved packaging). 

• Analysis can comprehend not only custom devices, but also a range of 
tensor calculations for a range of applications from different domains, 
including deep learning, graph analytics and databases. 

Next Steps24



Resources on Efficient Processing of DNNs25

http://eyeriss.mit.edu/tutorial.html 

http://eyeriss.mit.edu/tutorial.html


Book Chapter on In-Memory Computing

Available on DNN tutorial website
http://eyeriss.mit.edu/tutorial.html

Many Design Considerations for In-Memory Computing

• Number of Storage Elements per Weight
• Array Size
• Number of Rows Activated in Parallel
• Number of Columns Activated in Parallel
• Time to Deliver Input
• Time to Compute MAC

Tradeoffs between energy efficiency, throughput, area 
density, and accuracy, which reduce the achievable gains 
over conventional architectures 
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• Modeling
– T. Andrulis, J. Emer, V. Sze, “CiMLoop: A Flexible, Accurate, and Fast Compute-In-Memory Modeling Tool,” IEEE International 

Symposium on Performance Analysis of Systems and Software (ISPASS), May 2024 Best Paper Award
– Y. N. Wu, P. Tsai, A. Parashar, V. Sze, J. Emer, "Sparseloop: An Analytical Approach to Sparse Tensor Accelerator Modeling," 

ACM/IEEE International Symposium on Microarchitecture (MICRO), October 2022. Distinguished Artifact Award
– Y. N. Wu, V. Sze, J. S. Emer, “An Architecture-Level Energy and Area Estimator for Processing-In-Memory Accelerator Designs,” IEEE 

International Symposium on Performance Analysis of Systems and Software (ISPASS), April 2020
– Y. N. Wu, J. S. Emer, V. Sze, "Accelergy: An Architecture-Level Energy Estimation Methodology for Accelerator Designs," 

International Conference on Computer Aided Design (ICCAD), November 2019.

• Spatial accelerator design
– T. Andrulis, J. Emer, V. Sze, “RAELLA: Reforming the Arithmetic for Efficient, Low-Resolution, and Low-Loss Analog PIM: No 

Retraining Required!,” International Symposium on Computer Architecture (ISCA), June 2023
– Y.-H. Chen, T. Krishna, J. Emer, V. Sze, "Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural 

Networks," IEEE Journal of Solid-State Circuits (JSSC), ISSCC Special Issue, Vol. 52, No. 1, pp. 127-138, January 2017. Top 5 most 
cited JSSC paper of all time 

– Y.-H. Chen, J. Emer, V. Sze, "Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks," 
International Symposium on Computer Architecture (ISCA), pp. 367-379, June 2016. Selected for IEEE Micro’s Top Picks special 
issue on "most significant papers in computer architecture based on novelty and long-term impact" from 2016

Related Work by PIs (http://emze.mit.edu):27
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