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Research Objectives

* Provide a systematic way to:

— Describe a wide range of Al hardware accelerators, e.g., deep neural
networks (DNN), analog neural networks and (sparse) tensor, that
vary in architecture, flexibility and technology

— Evaluate different designs across a variety of metrics, including
latency, bandwidth, area and energy

— Provide capability to make fair comparisons between different designs
across a variety of workloads, with a holistic view of the entire system

— Rapidly explore the design space



Design Space for Deep Neural Networks and Tensor Accelerators

Digital-Compute Accelerator Designs
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Analog-Compute (CiM) Accelerator Designs
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Compute In Memory (CiM) Accelerators
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Compute In Memory

" Acrt]i;/?tion .iStinput Vdoltige (Vi)G - Reduce data movement by moving compute
eight is resistor conductance (G,) into memory

« Compute MAC with memory storage element

« Analog Compute
— Activations, weights and/or partial sums are encoded

I, = V,xG, with analog voltage, current, or resistance
— Increased sensitivity to circuit non-idealities
Psum =L +1 — A/D and D/A circuits to interface with digital domain
is output  _ 12
current = V1%¥Gy + VpxGy

« Leverage emerging memory device technology
Image Source: [Shafiee, ISCA 2016]



Il CiM Research Spans Full Stack

Devices: The components forming each memory cell (e.g., SRAM, DRAM, eNVM)

Circuits: The components performing computation, analog/digital conversion,
storage, data movement, and other actions

Architecture: The organization of components into a larger system (e.g., the number
of each component and how components are connected)

Workload: The DNN to be processed, which we model as a series of extended-
Einsum operations with tensors of varying shapes and values

Mapping: The temporal and spatial scheduling of the workload onto the system

Need for modeling tool to enable apple-to-apple comparison
and design space exploration - CiMLoop




CiMLoop: A Flexible, Accurate, and Fast CiM Modeling Tool
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https://github.com/mit-emze/cimloop

Elll CiMLoop: A Flexible, Accurate, and Fast CiM Modeling Tool

* Flexibility
— A flexible specification that lets users describe, model, and map workloads to both
circuits and architecture
* Accuracy

— A data-value-dependent energy model that captures the interaction between
DNN operand values, data representations, and analog/digital values

— Estimated values are within 8% of values reported for measured designs

* Speed

— A fast statistical model to enable for constant runtime w.r.t. number of
components and amortizes overhead across mappings

— Enables orders-of-magnitude speed up relative to other high-accuracy models

[Andrulis, ISPASS 2024] i



Ell Example: Apples-to-Apples Comparison

Macro Tl Cr e B
[Sinangil, JSSC 2021] [Wang, VLS/ 2022] [Jia, JSSC 2020]
Technology Node /nm 22nm 65nm
ADC Type 4b Flash 8b SAR 8b SAR
Memory Device 6T SRAM 8T SRAM + Capacitor 6T SRAM
1000
% — [Sinangil] —— [Wang]  — [Jia]
Compare Designs: ° \,\
Same technology, ADC, g, T~ T I |
device for all macros 2 \
Y10

Number of Input & Weight Bits

[Andrulis, ISPASS 2024]



Example: Design Space Exploration

N
wl

Accumulator Control m DAC+MAC m ADC+Accumulator

128 512 1024 128 1024 128 1024 1024

Max-Utilization Workload Large-Tensor-Size Workload Medium-Tensor-Size Workload Small-Tensor-Size Workload

CiM Array Size (N Rows x N Columns)

N

Better (Less Energy)

Energy/MAC (pJ)

Explore array size (architecture) and DNN shapes (workload)

[Andrulis, ISPASS 2024] i



CiMLoop for Photonic Accelerator Modeling
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Many similarities in design of CiM and Photonic accelerators - Can model with CiMLoop!

[Andrulis, ISPASS 2024]



Compute In Memory (CIM) Accelerators

Energy
Breakdown
prhnalog Digital- Weight Memory
nalog-
InpUtS .Cﬁnver%er’ +
(DAC) Analog Processing

Analog-Digital-Converter (ADC)

ADC consumes significant energy Compute'd Results

Vivienne Sze @ http://sze.mit.edu/ Mir
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RAELLA: Shifting Distributions to Reduce Input to ADC
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RAELLA: Shifting Distributions

1. Shift the mean of each distribution
to the center of the ADC range
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Center + Offset Weight Encoding Zero-Average Analog Results

Partition computation
Digital calculates high-resolution center operations
Analog calculates parallel offset operations

(" Baseline Analog ropresent o0 conters and offusts / Digital Center \  ( Analog Offset
Weights  Inputs _Center Offsets  Inputs Center_ - Sum Input _ Offsets - Input
151 |4 13| |+2]| |4 4 +2| |4
10112 = |33 [2] = 1322+-3'2
14| | 1 13| | +1 1 1 +1 1 | 1

L 94 | L 91 | J L3 |/

Encoding allows analog input to ADC to be
smaller and closer to zero

[Andrulis, ISCA 2023] i



RAELLA: Shifting Distributions
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RAELLA: Shifting Distributions
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2. If a computation produces large
results, slice it into smaller pieces




Adaptive Weight Slicing: Slice Large-Result Computations
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RAELLA: Shifting Distributions
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RAELLA: Shifting Distributions

9 Analog
a Crossbar
3. Speculate that results are in-range,
recover out-of-range results ‘ ‘ To ADC

A\
Recover / \ Recover
Min Max
Mir




Dynamic Input Slicing: Try Again with Smaller Slices

Weight Input
8b | *| 8b = 16b > To ADC
|
*. Bit Slice
N/
8b | -[[ab = 12b —>(To ADC
8b | s ab| = 12b | > To ADC
@ More Cycles (Time) < Smaller Range @ More ADC Converts (Energy)

1. Speculate with big input slice

2. Recover out-of-range results
with multiple smaller input slices

Out-of-range In-range with Out-of-range
big slice

Recover: Run
multiple small
input slices.

Recover: Run
multiple small
input slices.




RAELLA: Reshape Distributions of Input to ADC

 Makes analog operations produce low-resolution results
— 1024x reduction of input to ADC

* Enables more compute per ADC convert while using lower-resolution ADCs

— Improves energy efficiency by 3.9x and throughput by 1.8x compared to iso-area ISAAC

* Maintains DNN accuracy without changing DNN or retraining

1.00%

====Baseline 100%
===(1): Center+Offset Weights 90%
(2): Adaptive Weight Slicing + (1) 80%
===(3): Dynamic Input Slicing, Speculation + (2) 70%
====(3): Dynamic Input Slicing, Recovery + (2) 60%
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o
o
o
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Probability

7b ADC
Range

% Column Sums
Correct

0.20%

0.00%

-128  -64 0 64 128 192 256 320 384 448 512 576 640 704 768 832 89 960 1024

Input to ADC
[Andrulis, ISCA 2023] i



Designing DNNs for CiM —
@ 80 =0= vggl6
< == vggl9
a == inceptionv4
. . . . © 60 —&=— inceptionresnetv2
* Designing DNNs for CiM may differ from 5 3 i resnet18
. . Y 40 resnet152
DNNs for digital processors 2 i resnext101_32x4d
£ 4 20 resnext101_64x4d
. . IS =@~ squeezenetl 0
* Highest accuracy DNN on digital ; —— squeezenetl 1
. . i A ~@— densenet121
processor may be different on CiMv 0’0 01 0.2 03 |~ moblienctv2

Noise Std
— Accuracy drops based on robustness to non-

idealities Storage Element

* Reducing number of weights is less
desirable

— Since CiM is weight stationary, may be better
to reduce number of activations

— CiM tend to have larger arrays =2 fewer
weights may lead to low utilization on CiM

«— RxXxSxC —

[Yang, IEDM 2019] i



Next Steps

* Enhance our prior work that allows for the whole system analysis at the
architectural level combined with characterizations of each
technological component of the system, to project the energy, speed,
and cost of a proposed design with a new technology (including
emerging devices and improved packaging).

* Analysis can comprehend not only custom devices, but also a range of
tensor calculations for a range of applications from different domains,
including deep learning, graph analytics and databases.



Resources on Efficient Processing of DNNs
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Book Chapter on In-Memory Computing

Many Design Considerations for In-Memory Computing
CHAPTER 10

Advanced Technologies « Number of Storage Elements per Weight
As highlighted throughout the previous chapters, data movement dominates energy consump- ® Array S ize

tion. The energy is consumed both in the access to the memory as well as the transfer of the
data. The associated physical factors also limit the bandwidth available to deliver data between PY N m b f R A t. t d 1 P I I I
memory and compute, and thus limits the throughput of the overall system. This is commonly u e r O OWS C Iva e I n a ra e
referred to by computer architects as the “memory wall.”! . .
To address the challenges associated with data movement, there have been various efforts [ N rT] b f ‘ I rr] A t t d P I I I
to bring compute and memory closer together. Chapters 5 and 6 primarily focus on how to u e r O O u n S C Iva e I n a ra e
design spatial architectures that distribute the on-chip memory closer to the computation (e.g.,

scratch pad memory in the PE). This chapter will describe various other architectures that use [ ] Ti m e to D e I ive r I n p ut

advanced memory, process, and fabrication technologies to bring the compute and memory together.

First, we will describe efforts to bring the off-chip high-density memory (e.g., DRAM) .
closer to the computation. These approaches are often referred to as processing near memory or ® TI m e to CO m p u te M AC
near-data processing, and include memory technologies such as embedded DRAM and 3-D
stacked DRAM.

Next, we will describe efforts to integrate the computation 770 the memory itself. These
approaches are often referred to as processing in memory or in-memory computing, and include
memory technologies such as Static Random Access Memories (SRAM), Dynamic Random T d ff b t ﬁ' - th h t
Access Memories (DRAM), and emerging non-volatile memory (NVM). Since these ap- ra eo S e Wee n e n e rg y e I CI e n Cy, ro u g p u y a re a
proaches rely on mixed-signal circuit design to enable processing in the analog domain, we will . . . .
also discuss the design challenges related to handling the increased sensitivity to circuit and de-
vice non-idealities (g.g., nonlifeariry, process and texgnperamre variations), arsywe]l as the impact d e n S I ty, a n d a CCU ra Cy, Wh I Ch re duce the a Chle Vable galns
on area density, which is critical for memory. . .

Significant data movement also occurs between the sensor that collects the data and the t I h t t
DNN processor. The same principles that are used to bring compute near the memory, where O Ver Con Ven Iona arC I eC ureS
the weights are stored, can be used to bring the compute zear the sensor, where the input data is
collected. Therefore, we will also discuss how to integrate some of the compute 770 the sensor.

Finally, since photons travel much faster than electrons and the cost of moving a photon
can be independent of distance, processing in the optical domain using light may provide signifi-

cant improvements in energy efficiency and throughput over the electrical domain. Accordingly,

we will conclude this chapter by discussing the recent work that performs DNN processing in Ava i I a b I e O n D N N tu to ri a I We b S ite

the optical domain, referred to as Optical Neural Networks.

1Specifically, the memory wall refers to data moving between the off-chip memory (c.g, DRAM) and the processor. h ttp : / / e y e ri S S . m it . e d u / t u t O ri a I . h t m |
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Related Work by Pls (http://emze.mit.edu):

* Modeling

— T. Andrulis, J. Emer, V. Sze, “CiMLoop: A Flexible, Accurate, and Fast Compute-In-Memory Modeling Tool,” IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS), May 2024 Best Paper Award

— Y. N. Wuy, P. Tsai, A. Parashar, V. Sze, J. Emer, "Sparseloop: An Analytical Approach to Sparse Tensor Accelerator Modeling,"
ACM/IEEE International Symposium on Microarchitecture (MICRO), October 2022. Distinguished Artifact Award

— Y. N.Wu, V. Sze, J. S. Emer, “An Architecture-Level Energy and Area Estimator for Processing-In-Memory Accelerator Designs,” IEEE
International Symposium on Performance Analysis of Systems and Software (ISPASS), April 2020

— Y.N. Wy, J. S. Emer, V. Sze, "Accelergy: An Architecture-Level Energy Estimation Methodology for Accelerator Designs,"
International Conference on Computer Aided Design (ICCAD), November 2019.

* Spatial accelerator design

— T. Andrulis, J. Emer, V. Sze, “RAELLA: Reforming the Arithmetic for Efficient, Low-Resolution, and Low-Loss Analog PIM: No
Retraining Required!,” International Symposium on Computer Architecture (ISCA), June 2023

— Y.-H. Chen, T. Krishna, J. Emer, V. Sze, "Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural
Networks," IEEE Journal of Solid-State Circuits (JSSC), ISSCC Special Issue, Vol. 52, No. 1, pp. 127-138, January 2017. Top 5 most
cited JSSC paper of all time

— Y.-H. Chen, J. Emer, V. Sze, "Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks,"
International Symposium on Computer Architecture (ISCA), pp. 367-379, June 2016. Selected for IEEE Micro’s Top Picks special
issue on "most significant papers in computer architecture based on novelty and long-term impact" from 2016
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