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Terahertz Integrated Circuits and Systems at MIT
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Presenter Notes
Presentation Notes
Before jumping to that, here, I just want to show some example chips that my team has developed over the past few years. So our interest goes from gas molecular sensing to radar imaging, from ultra-high-speed wireless and wireline communications to high security data links and ID tags. We also have efforts in developing chip hardware for quantum information processing.


What’s the Missing Opportunity in THz Wireless?

USAF PAVE-PAWS Radar (=0.4 GHz) MIT-Intel CMOS Reflectarray (f=265 GHz)
2.2° beamwidth, 2677 antennas, 22x22 m? 1° beamwidth, 9604 antennas, 0.05x0.05 m?

Ultra-Miniaturization of Wireless Hardware




THz-ID: Ultra-Miniaturized Tag with Built-In Security

Typical RFID
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First Prototype: Principle and Experimental Results

Backscattered THz Wave for Uplink
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THz-to-DC Energy Harvester in CMOS

Harvester Comparison
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Anti-Tampering Function

Conventional RFIDs Under Tampering
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Sub-THz Anti-Tampering ID Using THz Backscattering
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System Architecture
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Sub-THz Fingerprinting at Chip-item Interface

B Substrate-mode wave radiation below the chip using slot
B Sub-THz waves scattering varies with 3D material distribution under chip.

B Scattering detection using radiating & sensing slot pair
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Presenter Notes
Presentation Notes
We employ slot antennas to capture EM random properties because slot uses substrate-mode wave radiation due to the silicon’s high dielectric constant. Sub-THz waves scattering randomly especially we mix glues and hundreds um size metal particles together. Coupling two slots, one for radiating and one for sensing, allows us to gather coupling information at two locations


Two-State Beam-Reconfigurable Radiating Slot
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B Two-state phase shifter for beam-reconfigurability
B Beam-steered towards the upper/lower side of the chip substrate


Presenter Notes
Presentation Notes
For the radiating slot, we used a two-state phase shifter for beam-reconfigurability – so that beam-steering of THz waves can be beam-steered to upper or lower side of the chip substrate.


Simulated Inter-Slot Coupling Responses
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Presenter Notes
Presentation Notes
This is the simulated inter-slot coupling responses. We change the number and position of the metal particles as shown in the left diagram. Based on their location, their transmission coefficients are different and this is sub-THz fingerprint.


Tag Operation (1) — Downlink

Sub-THz wave from reader
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B Sub-THz wave captured by patch antenna
B 1.1 power splitting between THz square-law detector and slot pairs


Presenter Notes
Presentation Notes
Sub-THz input wave iis captured by patch antenna. Half of its power is injected to MOS cold-fet detector and recover fm signal for backscatter. other half is injected to the metal slot.


Tag Operation (2) — Sub-T
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Presenter Notes
Presentation Notes
Injected input-wave is re-launched by metal slot and injected to the silicon substrate and 3D distribution below the chip and partially collected by metal slot.


Tag Operation (3) — Uplink

Sub-THz response to reader
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B Probed Sub-THz wave backscattered back to reader (at fzr == 1)
B LO for backscatter - f signal is frequency divided (+2) from the THz detector


Presenter Notes
Presentation Notes
This probed sub-THz wave is backscattered back to reader. Frequency shift is done by LO signal from the THz detector output.


Die Micrograph

65nm CMOS process

B Metal shield for optical insensitivity
on downlink circuits

B Photodiodes filled in all empty
regions

THz slot arrays, switches and matching network
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Measurement Setup for Fingerprint Acquisition

Signal generator ~ WWR3.4-Horn antenna
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Presenter Notes
Presentation Notes
This is measurement setup for fingerprint acquisition. VDI-WR3.4-VNAX provides the tag THz power and backscattered power amplitude is recorded by the spectrum analyzer. Frequencies and different codes are swept.



Measurement Setup for Fingerprint Acquisition

m Experimental setup for modifying the glue distribution under the chip
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Presenter Notes
Presentation Notes
To check the whether glue distribution affects the obtained sub-THz fingerprint, we need to modify the glue distribution under the chip. To enable this, we made a hole to the PCB so that we can change the environment of the backside of the chip easily by changing the surface prototype


Measured Sub-THz Fingerprint

Measured amplitude difference between two samples
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Presenter Notes
Presentation Notes
Frequency was swept from 261.18 to 264.78GHz and 16 different code was swept. We normalize the output power by 1st code at each frequency. This is to de-embed the frequency response of the Thz source and receiver. Color mapped results are shown in this 2nd figure.


Neural Network Based Fingerprint Authentication
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Presenter Notes
Presentation Notes
Finally, we provide a neural network based fingerprint authentication technique. The neural network is trained so that inter-sample distance become larger and intra-sample distance becomes smaller. The right figure shows the testing results. By using this neural network algorithm, we have the authentication accuracy of 99.34%.


Conclusions

This work shows first sub-THz packageless anti-tampering tag
Slot-based sub-THz wave scattering detection technique
Beam-steering technique is used to provide spatial diversity

Sub-THz BPSK backscatter to suppress cross-polarization
leakage from patch antenna

Neural-network-based authentication algorithm is
demonstrated for fingerprint authentication

System performance

Technology 65nm CMOS
Carrier 261 - 265 GHz
frequency
Main feature Tamper-evidence
. Downlink: OOK
Modulation Uplink: BPSK
Analog power 5.1uW
Digital power 0.92uW
Harvesting Photovoltaic
method energy
Die area 4.2 mm?

A Packageless Anti-Tampering Tag Utilizing Unclonable Sub-THz Wave Scattering at the

Chip-ltem Interface
E. Lee, X. Chen, M. Ashok, J. Won, A. Chandrakasan and R. Han
IEEE Intl. Solid-State Circuit Conf. (ISSCC), San Francisco, CA, Feb. 2024.




THz Wake-Up Receiver for Ultra-Miniaturized Sensing Platform
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Demonstrations
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