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Problem Statement

• Side-channel attacks (SCAs) such as power side-channel attacks (PSAs) 
and electromagnetic side-channel attacks (EMSAs) are of increasing 
concerns.

• Much research has been done on SCAs and countermeasures on digital 
systems.

• System security is only as good as the weakest link in the system.
• Analog-to-digital converters (ADCs) are ubiquitous in most electronic 

systems, yet their SCA vulnerability received little attention.
• ADCs, due to their switching activities, are vulnerable to SCAs.
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Attack Overview

 PSA or EMSA consists of 2 steps
 Profiling (training): Build mapping function D[N-1:0]=𝓕𝓕(IADC)
 Use neural networks to build 𝓕𝓕

 Attacking (inference): Use 𝓕𝓕 to decode IADC into DDecoded[N-1:0]
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Profiling – Training Data Acquisition (PSA)

 Obtain [Feature vector : A/D conversion result] pairs from training ADC
 We used Min/Max current values each ½ clock cycle as feature 
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Profiling – Training Data Acquisition (EMSA)

 Obtain [Feature vector : A/D conversion result] pairs from training ADC
 We used Min/Max current values each ½ clock cycle as feature 
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Profiling – Neural Network Training

 Train “N” neural networks to build mapping function D[N-1:0]=𝓕𝓕(X)
 Each fully-connected neural network or CNN decodes different bit of 

D[N-1:0]

D[N-1:0] = [𝓕𝓕N-1(X), 𝓕𝓕N-2(X), …, 𝓕𝓕1(X), 𝓕𝓕0(X)] 
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Attacking

 By using pre-trained neural networks 𝓕𝓕(X), attack decodes supply 
current waveform of target ADC that is converting arbitrary input
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PSA Results – Commercial ADC-A
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PSA Results – Commercial ADC-B
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Previous Secure ADCs (MIT)

Random timing
conversion

M. Ashok, CICC 2022

Switched capacitor
Equalizer

T. Jeong, JSSC 2021

Random mapping
Conversion

R. Chen, VLSI 2022
CICC 2023
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• Architecture
– Split DAC into UDAC and LDAC (no power/area penalty)
– Each bit search is randomized
– Low power/area/conversion time overhead compared with unsecure ADCs
– Much more effective power trace randomization

Enhanced Random Mapping ADC (1)
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• Combine DACs for 2 LSB it cycles to lower noise

Enhanced Random Mapping ADC (2)
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Example Conversion Sequence

Provides on average 9x1012 different power supply traces for each digital 
output codes (even pseudorandom-number generator is used)
Total 3.6 x1016 traces for  a 12 bit ADC
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Chip Micrograph

Chip specifications
Process technology 65nm LP

VDD [V] 1.2

Resolution [b] 12

Sampling Rate 
[MS/s]

40

Area [mm2] 0.075

ENOB [b] 10.8

FoM (fJ/c.-s) 9.8

MIT confidential, not for distribution



2022 IEEE VLSI Symposium on Technology and Circuits

EMSA Testing Setup
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Random Mapping Results: PSA and EMSA (1)
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• Small RMS error without protection
• Large RMS error with protection
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Random Mapping Results: PSA and EMSA (2)



Example Images of EMSA

• Information is leaked without protection
• Information is leakage is prevented with protection
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Summary & Future Research
• Current equalizers 

- Effective against PSA
- Incurs area and power penalty
- Vulnerable to EMSA

• Random mapping 
- Very effective against PSA and EMSA
- Low area/power/performance penalty
- Limited to SAR ADCs

• Future research topics
- Currently, EMSA is a proximity attack. Longer range EMSA needs to be investigated
- Attack/protection on different types of ADCs

• Delta-sigma ADCs
• Time-interleaved ADCs
• Time-domain ADCs
• Pipeline ADCs
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