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Electronic-protonic Conduction in Electrochemical RAM

S. Bitton, J. A. del Alamo

Sponsorship: MIT-IBM Watson Al Lab, Fulbright Fellowship, Intel International Science and Engineering Fair Fellowship,
Zuckerman STEM Leadership Program, Schmidt Israeli Women's Postdoctoral Fellowship

Electrochemical random-access memory (ECRAM) is a
promising candidate for analog in-memory neural net-
work accelerators. Unlike traditional digital memory;,
which stores binary states (0 or 1), ECRAM can store
a continuous range of values by modulating the con-
ductivity of a semiconductor channel. This enables
efficient analog computation directly within memory,
reducing data movement between memory and proces-
sor, lowering energy consumption, and enhancing per-
formance for artificial intelligence workloads.

The non-volatile analog states in ECRAM are
achieved through proton (i.e, hydrogen -cations)
intercalation from a hydrogen reservoir, through an
electrolyte, into a semiconductor channel. As protons
accumulate in the semiconductor channel, they attract
electrons, which increases the channel's conductivity.
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While this basic mechanism is known, the underlying
electronic-protonic interactions that govern device
behavior are not yet fully understood. These interac-
tions are key to unlocking the full potential of ECRAM
for neuromorphic computing.

In this work, we investigate these mechanisms
using a combination of advanced two-dimensional
(2D) device simulations and targeted experiments.
Our simulation framework provides a theoretical
foundation that complements the experimental
results, offering insights into proton dynamics and
their effect on conductivity. This integrated approach
helps identify the key factors that influence device
performance and guides strategies for further
optimization.
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A Figure 1: Simulated 2D ECRAM structure based on a WO, channel showing the spatial distribu-
tion of (a) proton density and (b) electron density after SO potentiation pulses.

FURTHER READING:

« M.Onen, N. Emond, B. Wang, D. Zhang, F. M. Ross, J. Li, B. Yildiz, and J. A. del Alamo, “Nanosecond Protonic Programmable Resistors For

Analog Deep Learning,” Science, vol. 377, pp. 539-43, 2022.

« M.Onen,J. Li B.Yildiz, and J. A. Del Alamo, "Dynamics of PSG-Based Nanosecond Protonic Programmable Resistors for Analog Deep
Learning" 2022 International Electron Devices Meeting (IEDM), vol. 2, no. 6, pp. 1-4, 2022.
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Impact of Annealing on Ferroelectric Properties of HZO for Non-volatile Memory

H. Choi, J. C.-C. Huang, Y. Shao, T. E. Espedal, D. A. Antoniadis, J. A. del Alamo

Sponsorship: SRC

Ferroelectric (FE) materials, particularly hafnium ox-
ide (HfO,)-based thin films, have attracted significant
interest for complementary metal-oxide-semiconduc-
tor-compatible non-volatile memory technologies. In
this study, we examine how thermal annealing affects
the FE properties of HZO thin films compared to unan-
nealed films (HZO, pure HfO,, and ZrO,). We fabricat-
ed metal-insulator-metal structures using plasma-en-
hanced atomic layer deposition for the insulator and
sputtering for the tungsten electrodes.
Capacitance-voltage (C-V) and charge-voltage (Q-
V) measurements at 100 kHz reveal clear differences
between annealed and unannealed films. Annealed
HZO samples show distinct butterfly-shaped C-V
loops (Figure 1a), indicating robust FE behavior. The
strong hysteresis in the Q-V characteristics (Figure 1b)
demonstrates a remnant polarization (2Pr) of approx-
imately 39.4 puC/cm? where each polarization state
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represents a distinct memory state suitable for non-
volatile memory.

Unannealed HZO, HfO,, and ZrO, films exhibit
relatively featureless C-V characteristics but subtle
yet measurable hysteresis in their Q-V characteristics,
suggesting previously over-looked polarization.
Although significantly smaller than annealed HZO,
the observed remnant polarization (below 3 puC/cm?)
challenges the assumption that these materials lack
ferroelectricity without annealing.

These findings highlight that annealing greatly
enhances polarization stability and ferroelectricity in
HZO thin films, guiding the development of efficient,
high-performance FE memory devices. Additionally,
unannealed HfO, and ZrO, films may also be useful
for applications requiring minor polarization effects.
Future research should explore other activation
methods to optimize FE polarization properties.
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A Figure 1: () C-V loops and (b) Q-V loops of metal/ferro/metal with different FE materials.

FURTHER READING:

« T.Kim, J. A. del Alamo, and D. A. Antoniadis, "Switching Dynamics in Metal-Ferroelectric HfZrO2-Metal Structures," IEEE Transactions on
Electron Devices, vol. 69, no. 7, pp. 4016-4021, July 2022. DOI: 10.1109/TED.2022.3175444

e T.Kim,J. A del Alamo, and D. A. Antoniadis, "Dynamics of HfZrO, Ferroelectric Structures: Experiments and Models," 2020 IEEE International
Electron Devices Meeting (IEDM), vol. 21, no. 4, pp. 1-4, 2020. DOI:10.1109/I[EDM13553.2020.9372013
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Atomistic Simulations on lon Incorporation in 2D Channel Materials for Fast
Conductivity Modulation in Electrochemical Random-access Memory Devices

V. Fotopoulos, M. Siebenhofer, M. Huang, L. Xu, B. Yildiz
Sponsorship: SRC

Electrochemical random-access memory (ECRAM) has
emerged as a novel type of pro-grammable resistor for
crossbar arrays—a promising architecture for imple-
menting energy-efficient artificial neural networks.
ECRAMs consist of three key functional layers: an ion
reservoir, a solid electrolyte, and a channel (Figure 1(a)).
Through voltage-driven intercalation of mobile ions
(e.g., H+), the electronic conductivity of the channel can
be finely modulated, enabling precise control over the
resistancestate of thedevice. Mixed ionicand electronic
conducting oxides, e.g, WO,, have been investigated
as channel materials. However, their bulk nature
necessitates three-dimensional ion redistribution,
leading to undesirably long conductivity settling
times. Two-dimensional (2D) materials, including
monolayers of transition metal dichalcogenides
(TMDs), such as MoS,, offer a promising alternative,
yet the mechanisms of interfacial ion transport and
their impact on the conductivity of the channel remain
underexplored.

In this work, we employed density functional
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theory to investigate hydrogen (H) incorporation at
interfaces between a solid electrolyte (SiO,) and a
monolayer (MoS,) channel (Figure 1(b)). We explored a
range of SiO, surface chemistries—including surfaces
with unsaturated Si and O dangling bonds and
reconstructed surfaces with fully saturated bonds—
and showed that surface termination determines
the most stable H incorporation sites. For defect-free
MoS,, H is stable on MoS, only when the underlying
SiO, surface is fully saturated (Figure 1(c)(i)), in-
creasing the channel’'s conductivity through n-type
doping (Figure 1(d)(i)). In contrast, when unsaturated
O and/or Si dangling bonds are present (Figure 1(c)
(ii)), H preferentially binds to the electrolyte surface,
remaining electronically decoupled from MoS, (Figure
1(d)(ii)). Additionally, introducing a sulfur vacancy
(V,) in MoS, alters this behavior: across all surfaces, H
stabilizes inside the vacancy, leading to n-type doping.
These findings highlight how interfacial structure and
defect engineering can enhance ionic modulation of
conductivity in 2D ECRAMs.
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A Figure 1: () ECRAM device. (b) MoS,/SiO, interface. (c) (i) At fully saturated interfaces, H is stable on MoS,,. (i) In interfaces with
dangling bonds, H is stable on SiO.,. (d) (i) Density of states (DOS) of MoS, in saturated interface. (i) DOS of MoS, in interface with

dangling bonds.

FURTHER READING:

e A A Talin, J. Meyer, J. Li, M. Huang, M. Schwacke, H. W. Chung, L. Xu, E. J. Fuller, Y. Li, and B. Yildiz, “Electrochemical Random-Access Memory:
Progress, Perspectives, and Opportunities,” Chemical Reviews, vol. 125, no. 4, pp. 1962-2008, 2025.
« M. Schwacke, P. Zguns, J. A. del Alamo, J. Li, and B. Yildiz, “Electrochemical Ionic Synapses with Mg2+ as the Working Ion,” Advanced

Electronic Materials, vol. 10, no. 5, p. 2300577, 2024.

« M. Huang, M. Schwacke, M. Onen, J. A. del Alamo, J. Li, and B. Yildiz, “Electrochemical Ionic Synapses: Progress and Perspectives,” Advanced

Materials, vol. 35, no. 37, p. 2205169, 2023.
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Accelerated Analog In-memory Computing for Neural Network Training

I.J. Gallo, J. A. del Alamo
Sponsorship: MIT-IBM Watson Al Lab

Neural network training demands enormous compu-
tational resources, leading to high energy consump-
tion and long processing times. Analog in-memory
computing offers a promising solution by performing
matrix-vector multiplications directly within memory
arrays, leveraging the physical properties of analog de-
vices such as protonic synapses. However, a fundamen-
tal limitation of analog crossbar arrays is their inability
to process multiple inputs simultaneously.

We propose a multi-tile parallel processing
architecture that accelerates existing algorithms
such as Tiki-Taka by introducing parallelism at the
algorithmic level, as shown in Figure 1. Our approach
distributes computation across multiple crossbar
arrays, enabling the parallel processing of inputs while
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Processed
Gradients
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A Figure 1: Architecture diagram of the pro-posed multi-tile par-
allel processing approach for accelerated Tiki-Taka.

FURTHER READING:

maintaining high accuracy. Using IBM's AITHWKIT
simulation frame-work, we demonstrate that this
parallel architecture achieves comparable accuracy
to conventional sequential implementations while
significantly reducing training time.

As shown in Figure 2, our parallel implementation
maintains over 97% accuracy on the Modified National
Institute of Standards and Technology (MNIST)
dataset while achieving substantial speedup compared
to standard Tiki-Taka implementations. By combining
parallelization with analog in-memory computing, our
approach delivers both dramatic improvements in
energy efficiency over conventional digital methods
and significantly accelerated training times.

Accuracy Across Tile Configurations - 40 epochs
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A Figure 2: Comparison of classification accuracy in MNIST

between standard and parallel implementations, demonstrating
maintained performance despite parallelization.

e« M.Onen, T. Gokmen, T. K. Todorov, T. Nowicki, J. A. del Alamo, J. Rozen, W. Haensch, and S. Kim, "Neural Network Training with Asymmetric
Crosspoint Elements,” Frontiers in Artificial Intelligence, vol. 5, Article 891624, 09 May 2022. DOI: 10.3389/frai.2022.891624
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Predicting Energy Materials Properties with Artificial Intelligence

R. Okabe, A. Chotrattanapituk, M. Li
Sponsorship: NSF, Department of Energy

Accurate prediction of materials properties is essential
for the discovery and design of next-generation energy
materials. While first-principles calculations provide
reliable insights, they are often computationally inten-
sive, particularly for complex properties such as opti-
cal response and phonon spectra. Recent advances in
machine learning offer promising alternatives, but key
challenges remain in embedding atomic structures and
handling variable-length outputs across materials.

To address these challenges, we introduce two
complementary artificial intelligence (AI) frameworks
tailored for property prediction: GNNOpt and the
virtual node graph neural network (VGNN). GNNOpt
is an equivariant graph neural network designed to
predict optical properties—including absorption,
refractive index, and reflectance—directly from
crystal structures. It leverages universal atomic
embeddings and the Kramers-Kronig relations to
deliver accurate predictions on a dataset of only 944
materials, demonstrating strong agreement with first-

b

principles calculations. Applications include screening
photovoltaic candidates by spectroscopic efficiency
and discovering topological quantum materials such
as SiOs with high quantum weight.

In parallel, VGNN addresses the challenge of
predicting phonon-related properties, which often
have materials-dependent dimensionality. By
incorporating virtual nodes into the crystal graph, this
approach enables efficient and accurate prediction
of r-point phonon spectra and full phonon dispersion
relations. With significantly reduced computational
cost and high accuracy, VGNN has generated large-
scale databases, including over 146,000 TI-phonon
entries and phonon band structures for zeolites.

Together, these Al models demonstrate how
tailored GNNs can achieve scalable, flexible, and
high-fidelity prediction of energy-relevant properties,
accelerating the discovery and design of functional
materials for energy conversion, transport, and storage
applications.
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A Figure 1: A GNN processes a crystalline material with m atoms per unit cell, where each atom is a real node. After message passing,
local features are aggregated into a fixed-size output. To enable flexible outputs, n virtual nodes are added to the crystal graph, allowing
representations of variable length not limited to real-node aggregation.

FURTHER READING

« R.Okabe, A. Chotrattanapituk, A. Boonkird, N. Andrejevic, X. Fu, T. S. Jaakkola, Q. Song, T. Nguyen, N. C. Drucker, S. Mu, B. Liao, Y. Cheng, and
M. Lj, “Virtual Node Graph Neural Network for Full Phonon Prediction,” Nature Computational Science, vol. 4, p. 522, 2024.

« N.T. Hung, R. Okabe, A. Chotrattanapituk, and M. Li, “Universal Ensemble-Embedding Graph Neural Network for Direct Prediction of Optical
Spectra from Crystal Structures,” Advanced Materials, vol. 36, p. 2409175, 2024.
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Oxide Interface Coatings in Proton-based Electrochemical lonic Synapse Devices

J. Meyer, B. Yildiz

Sponsorship: Department of Defense National Department of Science and Engineer-ing Graduate Fellowship (2022),
Department of Energy EFRC Hydrogen in Energy and Information Sciences

Electrochemical ionic synapses (EIS) that modulate the
electronic conductivity of a channel by ion intercala-
tion are promising devices for use in energy-efficient
neuromorphic computing hardware. Using protons as
the working ions enhances the energy-efficiency and
programming speed, but proton transfer through the
electrolyte and interfaces of the device faces kinetic
limitations. This presents a challenge for achieving
nanosecond programming at 1V or less.
Here,thinbinary oxide coatingsaredepositedatthe
electrolyte-channel (phosphosilicate glass (PSG)-WO,)
interface to modify the interface chemistry and EIS
device operation. Figure 1 shows tunable conductance
change of the channel in response to voltage gating,
depending on the interface oxide. The P,O, interface

LRELN| <4———H* Reservoir 80

coating markedly enhances the conductance change
obtained under cycling, relative to both the other
oxide-coated and unmodified (control) EIS devices.
The position of the oxide coating within the device
structure, in the middle of the PSG electrolyte versus
at the electrolyte-channel interface, also impacts
the magnitude of the effect on conductance change
(Figure 2). The P,O, and Y,0O, coatings increase and
decrease the conductance change, respectively, to a
greater degree when deposited at the interface. These
results inform interface design for EIS devices with
greater conductance change per voltage pulse, which
can enable lower voltages as the programming speed
increases towards the nanosecond scale.
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A Figure 1: a) EIS schematic and image. (b-c) Cycling of oxide-coated EIS with 10-nm PSG with +3
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Understanding the Role of Space Charge Resistances in ECRAM

M. Schwacke, M. Siebenhofer, T. Defferriere, H. Tuller, B. Yildiz
Sponsorship: IBM, MIT School of Engineering Mathworks Fellowship

With the rapid rise in the prevalence of artificial in-
telligence, the energy consumed by training neural
networks is also skyrocketing. Moreover, the energy
consumed each year by computing is exponentially in-
creasing and rapidly approaching the world’s total en-
ergy production, making finding more energy efficient
methods of computing imperative. Electrochemical
random-access memory (ECRAM) is a promising tech-
nology for brain-inspired computing and for energy
efficient training of neural networks. ECRAM devices
act as programmable resistors, where the resistance
of a channel material is programmed by electrochem-
ically controlled intercalation of small cations into or
out of the channel. A schematic of an ECRAM device
appears in Figure 1a. It is generally thought that resis-
tance modulation occurs due to changes in the bulk
carrier concentration of the channel, as electrons must
accompany cation intercalation to maintain charge
neutrality. However, polycrystalline thin films, which
are generally used as ECRAM channels, can have many
sources of resistance beyond the bulk, including resis-
tances arising from electron depletion in space charge
regions at grain boundaries, contacts, and the electro-

Mz H+' Li+' Mg2+

lon Reservoir/Gate

Active Layer/Channel .

Drain Source

lyte/channel or channel/substrate interfaces.
Weuseelectrochemicalimpedance spectroscopy to
characterize the contributions of bulk, grain boundary,
and contact resistances to the total resistance of
sputtered, polycrystalline WO, thin films, a common
ECRAM channel material, before and after various
levels of Mg?* intercalation. We find that space charge
resistances actually dominate the total resistance of
the films and are also modulated by ion intercalation.
To understand the mechanism by which space charge
resistances are modulated, we develop an electrostatics
model of space charge regions. The modeling results
suggest that several mechanisms exist by which small
concentrations of mobile cations could dramatically
reduce the degree of electron depletion in space charge
regions, including by cation accumulation in space
charge regions and cation insertion directly into grain
boundary or interfacial cores, as Figure 1b shows. This
work has important implications for understanding
the operating mechanisms of ECRAM. It also opens
new avenues for informed device design, including by
controlling grain size and interfacial chemistries.

A Figure 1: Schematic depictions of (a) an ECRAM device and (b) space charge regions adjacent to

grain boundaries.

FURTHER READING

e A A Talin, J. Meyer, J. Li, M. Huang, M. Schwacke, H. W. Chung, L. Xu, E. J. Fuller, Y. Li, and B. Yildiz, "Electrochemical Random Access Memory:
Progress, Perspectives, and Opportunities," Chemical Reviews, vol. 125, pp. 1962-2008, Feb. 2025.
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Quantifying and Deconvoluting the Variability in Protonic Electrochemical Random-

access Memories

L. Xu, M. Huang, B. Yildiz
Sponsorship: SRC

Electrochemical random-access memory (ECRAM) is a
novel programmable resistor candidate powering hard-
ware neural networks (HNNs) based on cross-bar ar-
rays, targeting fast and energy-efficient artificial intel-
ligence (AI) training. Low device variability is crucial to
high training accuracy in HNNs. ECRAMs are expected
to have low variability compared to other candidates
such as resistive random-access memory and phase-
change memory, enabled by the deterministic dynamic
doping of the channel. Some possible sources, such as
the material micro-structure and non-ideal fabrication
artifacts, can introduce variations in ECRAMs.

This work systematically quantified the variability
of  complementary  metal-oxide-semiconductor-
compatible protonic ECRAMs (PdH,/HfO, or YSZ/
WO, structure, Figure 1). By examining conductance
modulation range and symmetry with over 1000
conductance states, we observed low variations in
low-conductance regime (Figure 2). Device-to-device

variation showed dependence neither on channel
ordering (crystalline/amorphous), nor on channel sizes
ranging from 102 pm? to 1502 nm?.

Meanwhile, source/drain contact with the
channel was investigated as a possible variation
source. Correlation between the contact resistance
contribution and device modulation behavior was
observed. We explored contact improvement via
hydrogen plasma treatment or using Ti transition
layer and plan further evaluation to assess its impact
on variability.

These findings confirm that ECRAM meets
variability targets and demonstrates strong poten-
tial for downscaling, indicating it can be a promising
candidate for programmable resistors. The results
also emphasize the importance of microstructure
and contact resistance control for consistent, low-
variability operation.
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A Figure 1: ECRAM device structure. (a) Cross section schematic of device structure. (b) Optical image of a device with
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Toward Fast, Nanoscale, and Accurate Fabrication of Diffractive Optical Neural

Networks

D.Zhang, H. Kusaka, T. Nambara, Y. Kunai, G. Barbastathis
Sponsorship: Fujikura Ltd.

The fusion of machine learning and optics has driv-
en advances in all-optical computing, with diffractive
deep neural networks (D2NNs) emerging as a powerful
architecture. By using deep learning to design diffrac-
tive layers, D2NNs can perform tasks like image classi-
fication at the speed of light, offering high parallelism
and energy efficiency. However, D2NNs are typically
fabricated at the macro scale, which limits their suit-
ability for highly integrated devices. While some have
been made at the micron scale using slow, point-by-
point methods, these approaches remain unsuitable
for large-scale deployment. Moreover, accurately fabri-
cating these structures at wavelength-level resolution
remains a major challenge. Achieving fast, scalable, and
precise fabrication is critical for practical implementa-
tion.

We systematically address these fabrication
challenges. For speed, we used a digital micromirror
device as a dynamic mask to fabricate entire layer
patterns at once, enabling layer-by-layer lithography
rather than traditional point-by-point writing (Figure

Raw image

Magnified

1). To achieve the nanoscale, we demonstrated the
ability to fabricate 2.5-um pillar features using blue
light only (Figure 2). We will also adopt two-color
lithography to exceed the diffraction limit, achieving
sub-wavelength (A/2) resolution and enabling precise
phase control. In terms of accurate fabrication, we
discovered that non-local oxygen inhibition coupled
with varying light intensity along the vertical axis
due to diffraction can significantly degrade the
height profiles of printed pillars. This effect results in
inconsistent polymerization across depths, resulting
in shape distortion and even fabrication failure. To
explain this phenomenon, we modeled the underlying
photopolymerization dynamics, capturing both
chemical reactions and oxygen diffusion. The model
successfully describes the observed behavior and
provides a predictive framework. Based on this, we
proposed an illumination strategy that introduces
weak surrounding light to deplete oxygen, improving
quality of printed pillars and enabling consistency
across printed layers (Figure 2).

| Figure 1: Rapidly fabricated 3-layer structures observed under
optical microscope.

V Figure 2: (Top left) AFM height profiles of 3-layer structures.
(Top right) Simulation of coupling between non-local oxygen inhi-
bition and diffracted light intensity profiles. Introducing weak sur-
rounding light to pre-deplete oxygen effectively resolves this issue
and enhances fabrication quality. (Bottom) Experimental valida-
tion of simulation results.
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Discrete Domain Switching in Scaled Amorphous Metal-oxide Channel Ferroelectric

FETs

Y. Shao, E. Rafie Borujeny, J. Navarro Fidalgo, J. C.-C. Huang, T. E. Espedal, D. A. Antoniadis, J. A. del Alamo

Sponsorship: Intel Corporation, SRC

Understanding domain structures and domain switch-
ing mechanisms in ferroelectric (FE) Hfo.s‘Zro.sO2 (HZO)
is crucial for its applications in non-volatile memory
and analog hardware. Probing the actual size of the
FE domains and mapping their individual polarization
switching is challenging, but such information is highly
valuable for HZO-based FE device design.

In this work, we integrate FE-HZO in
complementary metal-oxide-semiconductor (CMOS)-
compatible FE-FETs based on an amorphous oxide-
semiconductor (AOS) channel (Figure 1a). Extensive
electrical characterizations, including large-signal
polarization-voltage, small-signal capacitance-voltage,
and direct-current current-voltage characteristics,
have been carried out on multiple device structures.
A large memory window (MW) of 22 V @ 1 pA/um is
achieved with a scaled channel length of 30 nm (Figure

2.5 nm ITO
10 nm FE-HZO
50 nm W
Thermal SiO, V, =005V
. - 2 0 4
& Ve (V)

A Figure 1: (a) Schematic of CMOS-compatible FE-FET. (b)
Hysteretic transfer characteristics of a highly scaled FE-FET.

FURTHER READING

1b). Gate voltage pulses with in-creasing amplitudes
are applied. After each pulse, channel current is read
at a constant gate voltage. Discrete domain switching
is observed in narrow devices with reproducible multi-
level erasing/programming operations (Figure 2),
whereas gradual switching is apparent in wider ones
(Figure 2). Moreover, we show that discrete polarization
switching acts as a sensitive probe to study intriguing
physics in AOS-channel FE-FETs, such as FE fatigue.
We observe that FE domain pinning, with domains
stuck in the up-polarization state, leads to MW closure
and negative threshold voltage shift. Based on a
channel length scaling study, we estimate the av-erage
FE domain size in our FE-HZO film to be ~40 nm. This
work shows the rich physics and countless engineering
opportunities in AOS-based FE devices.
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A Figure 2: Drain current obtained at a constant gate voltage as
a function of applied positive gate pulse amplitude of a narrow
device showing three discrete states.

« Y. Shao, E. Rafie Borujeny, J. Navarro Fidalgo, J. C.-C. Huang, T. E. Espedal, D. A. Antoniadis and J. A. del Alamo, “Discrete Domain Switching in
Scaled Oxide-Channel Ferroelectric FETS,” presented at 82nd Device Research Conference, 2024.

« Y. Shao, E. Rafie Borujeny, J. Navarro Fidalgo, J. C.-C. Huang, T. E. Espedal, D. A. Antoniadis and J. A. del Alamo, “Discrete Ferroelectric
Polarization Switching in Nanoscale Oxide-channel Ferroelectric Field-effect Transistors,” Nano Letts., vol. 25, no. 8, pp. 3173-3179, Feb. 2025.
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Electrochemical Random-access Memory with Monolayer MoS, Channels for Fast
Conductivity Modulation and Dynamically Tunable Transistors

M. Huang, L. Xu, X. Zheng, J. Kong, B. Yildiz
Sponsorship: SRC

Electrochemical random-access memories (ECRAMs)
are promising three-terminal programmable resistors
for powering deep neural network hardware accel-
erators when arranged in crossbar arrays. They are
three-terminal devices with an ion reservoir layer, a sol-
id-state electrolyte layer, and a channel layer. The elec-
tronic conductivity of the channel can be modulated by
electrochemical ion intercalation with good linearity,
symmetry, and low variability.

Conventional ECRAMs using bulk channels
could suffer from undesirable relaxation transients
due to ion diffusion through their finite thickness.
In this work, we investigate ECRAMs with a 2H-MoS,
monolayer as the channel (Figure 1a). Our findings
show that the supply of protons to the 2H-MoS,
channel enables reversible non-volatile conductance
modulation with microsecond voltage pulses (Figure

(a)
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1b). The response of the device to the applied gate
voltage exhibits both a non-volatile electrochemical
effect and a volatile electric field effect (Figure 1c).
When combined with the Si substrate as an electronic
back-gate, a transistor structure forms at the back
side, where the source-drain current is tunable via the
back-gate voltages. Applying top-gate pulses induces
a large threshold voltage shift, suggesting that the
hydrogen supplied to the MoS, and its surrounding
interfaces increases the n-type doping of the channel
(Figure 1d) and allows for a large range (105) of non-
volatile conductance modulation at a constant back
gate voltage. Our findings offer a pathway to develop
high-speed programmable resistors and dynamically
tunable transistors with 2D channels for hardware
neural networks and other in-memory computation
architectures.
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A Figure 1: (a) Schematic of ECRAM device with monolayer MoS, channel. (b) Channel conductance modulation
with microsecond voltage pulses. (c) Volatile and non-volatile conductance modulation effect from applied gate
voltage. (d) Source-drain current as function of back-gate voltage after increasing number of electrochemical
gate voltage pulses applied to top, showing shift of threshold voltage towards lower voltage with hydrogen supplied

to channel.

FURTHER READING

e A A Talin, J. Meyer, J. Li, M. Huang, M. Schwacke, H. W. Chung, L. Xu, E. J. Fuller, Y. Li, and B. Yildiz, “Electrochemical Random-Access Memory:
Progress, Perspectives, and Opportunities,” Chemical Reviews, vol. 125, no. 4, pp. 1962-2008, 2025.
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Dynamic Modeling of WO;-PSG Protonic Devices for Analog Computing

D. Shen, J. A. del Alamo
Sponsorship: MIT-IBM Watson Al Lab

By leveraging local information processing through in-
trinsic physical properties of devices, analog comput-
ing presents a promising approach to overcome com-
putational bottlenecks faced by traditional digital deep
learning systems. One prominent strategy involves
electrochemical ionic interactions in programmable
resistors, where device resistance is adjusted by ionic
exchange through an electrolyte. Previous research
in our group has demonstrated proton-based non-vol-
atile programmable resistors featuring a tungsten ox-
ide (WO,) channel, phosphorous-doped silicon dioxide
(PSG) electrolyte, and palladium (Pd) gate reservoir.
However, enhancing performance and making fabri-
cation complementary metal-oxide-semiconductor
(CMOS)-compatible remain crucial for application in
future accelerators.

In this study, we optimized the device structure
into a symmetric WO,-PSG-WO, stack, making device
fabrication fully compatible with standard CMOS
fabrication processes. Device programmability is
achieved by applying voltage pulses between the
gate and source/drain terminals, thereby precisely

@)
)

+ |

SizN,

WO; (extrinsic channel)

WO3; (intrinsic channel)

A Figure 1: WO4-PSG-WOy, protonic device structure and sche-
matic for distributive RC model. We use in-situ protonated WO,
as both channel and gate reservoir, Si;N,, as encapsulation, and W
as source/drain/gate contacts. The extrinsic channel is not gated
and is heavily doped, while the intrinsic channel is gated and lightly
doped.

FURTHER READING

controlling channel conductance.

To evaluate programming efficiency, we
systematically characterized channel conductance
responses to various pulse voltages and durations.
A distributive resistor-capacitor (RC) model was
developed to interpret experimental data and extract
critical device parameters by accurately simulating
voltage distribution across the electrolyte. This model
successfully matched experimental results except
under conditions of particularly high voltages or long
pulse durations. These discrepancies might highlight
the phenomenon of diffusion saturation. When the
pulse width is much shorter than the diffusion time of
protonsinside the WO3, proton flow from the reservoir
to the channel will become supply-limited. Diffusion
saturation significantly restricts programming speed
because conductance changes become proportional
to the square root of pulse width. Consequently,
improving ion diffusion rates within WO, emerges
as a critical factor for further enhancing device
performance.
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A Figure 2: Channel conductance response to different pulse
voltages and durations in a S pm-by-5 pm device with pulse setup
and direction as in Figure 1. Colors indicate pulse durations. Dots
show experimental data; lines show simulation results. With the
fitting formula on the right, we extract the device parameters on
the left.

« M.Onen, N. Emond, B. Wang, D. Zhang, F. M. Ross, J. Li, B. Yildiz, and J. A. del Al-amo, "Nanosecond Protonic Programmable Resistors for

Analog Deep Learning," Science, vol. 377, no. 6605, pp. 539-543, Jul. 2022.
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RDIT: Residual-based Diffusion Implicit Models for Probabilistic Time Series

Forecasting

C.-Y.Lai, D. S. Boning

We propose RDIT (Residual-based Diffusion Implicit
modeling for probabilistic Time series forecasting), a
novel framework designed to address key limitations
in recent probabilistic time series forecasting (PTSF)
methods. While traditional TSF models have increas-
ingly adopted deep learning architectures, many of
these rely on assumptions—such as linear mappings
and channel independence—that are ill-suited for ac-
curately modeling uncertainty. Additionally, standard
PTSF approaches often conflate point estimation and
noise modeling, resulting in reduced flexibility and sub-
optimal uncertainty quantification. To overcome these
issues, RDIT separates the forecasting process into two
stages: a plug-and-play model performs point-based
prediction (estimating the conditional mean or medi-
an), while a conditional diffusion model captures the
distribution of the residuals. This modular design not
only improves adaptability across different domains
but also allows the diffusion model to focus purely on
learning noise characteristics. For fast inference, RDIT

(2)

employs denoising diffusion implicit models (DDIM),
significantly reducing sampling time compared to
traditional diffusion models. Furthermore, we derive
a theoretical formulation for optimizing the continu-
ous ranked probability score (CRPS), a common metric
in probabilistic forecasting, under the assumption of
Gaussian-distributed errors. Based on this, we intro-
duce an error-aware expansion mechanism that ad-
justs the learned distribution to better match the eval-
uation metric. Experimental results across 8 datasets
and 6 forecasting horizons show that RDIT consistent-
ly outperforms state-of-the-art TSF and PTSF models
in terms of accuracy, uncertainty calibration, and gen-
eration speed. Our work provides a practical and the-
oretically grounded approach to modeling uncertainty
in time series forecasting, with potential applications
in risk-sensitive domains such as finance, healthcare,
environmental monitoring, and industrial process op-
timization.
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A Figure 1: (a) General scheme of this work. The point-based model is used to predict the point-based predictions; the residu-
al-based conditional model is used to predict residuals from the k-th diffusion step residual while conditioning on the input and
point-based prediction. (b) Normalized CRPS plotted against normalized standard deviation when the predictions are drawn from
a normal distribution with mean and standard deviation, with the ground truth beingy.

102

Neuromorphic Devices & Al Hardware Accelerators

MICROSYSTEMS ANNUAL RESEARCH REPORT 2025



Design Considerations of Analog Accelerators for Machine Learning Applications

J.Lee, J. A.del Alamo
Sponsorship: IBM, Ericsson

Recently, there has been tremendous progress in ma-
chine learning, leading to a dramatic increase in its
applications, such as image classification and natural
language processing. As a result, there has been an ex-
plosion in demand for Graphics Processing Units and
various accelerators that perform the computation
required for machine learning training and inference.
The widespread use of currently dominant digital ac-
celerators requires a massive amount of energy, which
is becoming a significant global issue. In response, ana-
log computing using devices such as protonic synapses

Current output ()

Analog Digital Converter (ADC)

Analog Current -> Digital Output (101..)

and ReRAM has been proposed as an alternative that
can significantly enhance energy efficiency. Analog
devices still face issues such as nonlinearity, asymme-
try, and noise. Moreover, their performance heavily de-
pends on components like Analog-to-Digital Convert-
ers (ADCs) and Digital-to-Analog Converters (DACs). In
this work, we investigate how non-idealities degrade
the performance of analog computing. We also evaluate
different analog algorithms that mitigate performance
degradation in several tasks such as Convolutional and
Recursive Neural Networks with IBM ATHWKIT.
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A Figure 1: Schematics of analog computing with analog crossbar array consisted by non-volatile memory cells.

MICROSYSTEMS ANNUAL RESEARCH REPORT 2025

Neuromorphic Devices & Al Hardware Accelerators

103



Development of a Neuromorphic Network using BioSFQ Circuits

E.B.Golden, A. Qu, V. K. Semenov, K. K. Berggren, S. K. Tolpygo
Sponsorship: Air Force Contract No. FA8702-15-D-0001

Superconducting single-flux quantum (SFQ) circuits
are promising candidates for neuromorphic hardware
accelerators. They are extraordinarily fast and en-
ergy-efficient and use asynchronous pulse-rate data
encoding, much like biological neurons. BioSFQ is an
SFQ-based family that uses these neuromorphic fea-
tures of SFQ circuits to process mixed analog/digital
logic. BioSFQ circuits are also programmable, enabling

(a)

Signal (control current), /

mixed modes of operation and resilience to fabrication
variation and flux trapping.

In this work, we design, fabricate, and measure a
3x3 network of bioSFQ comparators, the fundamental
building block of bioSEQ circuits. We also demonstrate
novel techniques for network calibration, integrating
on-chip memory, and image processing using this 3x3
network.

(b)

A Figure 1: (a) Schematic of a bioSFQ comparator and (b) layout of the 3x3 comparator network.
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CiMLoop: A Flexible, Accurate, and Fast Compute-In-Memory Modeling Tool

T. Andrulis, J. S. Emer, V. Sze

Sponsorship: Ericsson, TSMC, the MIT Al Hardware Program, MIT Quest, Samsung Semiconductor Fellowship, Siebel

Scholars Fellowship

Compute-In-Memory (CiM) is a promising solution
to accelerate Deep Neural Networks (DNNs) as it can
avoid energy-intensive DNN weight movement and
use memory arrays to perform low-energy, high-densi-
ty computations. These benefits have inspired research
across the CiM stack, but CiM research often focuses
on only one level of the stack (i.e., devices, circuits, ar-
chitecture, workload, or mapping) or only one design
point (e.g., one fabricated chip). There is a need for a
full-stack modeling tool to evaluate design decisions in
the context of full systems (e.g., see how a circuit im-
pacts system energy) and to perform rapid early -stage
exploration of the CiM co-design space.
Toaddressthisneed, we propose CiMLoop:anopen-
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source tool to model diverse CiM systems and explore
decisions across the CiM stack. CiMLoop introduces (1)
a flexible specification that lets users describe, model,
and map workloads to both circuits and architecture,
(2) an accurate energy model that captures the
interaction between DNN operand values, hardware
data representations, and analog/digital values
propagated by circuits, and (3) a fast statistical model
that can explore the design space orders-of-magnitude
more quickly than other high-accuracy models. Using
CiMLoop, researchers can evaluate design choices at
different levels of the CiM stack, co-design across all
levels, fairly compare different implementations, and
rapidly explore the design space.
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Ultra-low Power Superconducting Electronics for Deep Learning Accelerator

Architectures: Evaluating Energy Efficiency and Scalability

L. C. Blackburn, E. Golden, T. Andrulis, V. Sze, J. S. Emer, N. Gershenfeld, K. K. Berggren
Sponsorship: MIT Lincoln Laboratory, the MIT Al Hardware Program

Since the invention of the Josephson junction in the
1960s, superconducting electronics have shown prom-
ise for high-speed and energy-efficient computing.
Since 2013, the Adiabatic Quantum Flux Parametron
(AQFEP) device has gained popularity for its ultra-low
energy dissipation. AQFP inverters dissipate 10-*J per
switching event, 100 less than other superconductor
logic, and 10%X less energy than modern-day CMOS
transistors or 103X when including the cryogenic cool-
ing cost. As Moore's law ends and energy efficiency
emerges as a limit on today’s computing systems, su-
perconducting AQFP logic is a promising technology to
address these energy challenges.

Although individual AQFP device performance is
impressive, superconducting electronics have failed to
replace CMOS systems in the past in part due to the
high cost of cryogenic low-noise testing environments
and the limitations of superconductor memory scaling.
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To realize the promise of superconducting electronics,
thereisaneedtoarchitect fullsystemsthat canleverage
the benefits of the unique superconductor physics (e.g.,
low-energy logic, low-energy interconnects on zero-
resistance wires) while addressing the challenges (e.g.,
using low-noise cryogenic environments commoditized
by the quantum computing industry, constructing a
memory hierarchy that addresses the lack of a scalable,
high-density superconducting memory).

In this work, we extend Timeloop/Accelergy
accelerator modeling tools to support superconducting
accelerators. This framework explores the design
space of deep learning accelerator architectures with
a toolbox of superconducting circuits from various
logic families. We present results demonstrating
the tradeoffs between superconductor vs. CMOS
accelerators while running a range of deep learning
workloads.
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Single-Shot Matrix-Matrix Multiplication Optical Processor for Deep Learning

C.Luan, D. Englund, R. Hamerly
Sponsorship: NTT Research, TSMC, DARPA NaPSAC

The computational demands of modern AI have
sparked interest in optical neural networks (ONNs),
which offer the potential benefits of increased capac-
ity and lower power consumption. Notable progress
includes the demonstration of optical matrix-vector
multiplication (MVM) processors based on cascaded
Mach-Zehnder interferometer arrays using coherent
light as the data carriers and thermo-optic phase shift-
ers as weighting. Broadcast-and-weight MVM optical
processors using different wavelengths as data carriers
and tunable add-drop micro-ring resonators as weight-
ing elements have also been demonstrated. Recent ad-
vancements in delocalized photonic deep learning also
shows the advantages of using optical fan-out and an-
alog time integrator based optical MVM processors on
the Internet’s edge. So far, limited by the low parallel-
ism, most existing systems operate vector-vector mul-
tiplication (VVM) or MVM with O(N) or O(N?) scaling
in system throughput. To fully unlock the potential of
optical computing, a parallel matrix-matrix multipli-
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cation (MMM) processor will allow better throughput
and efficiency scaling than ordinary MVMs, but its real-
ization is challenging due to the 3D data structure and
high parallelism requirements.

In this work, we propose and experimentally
demonstrate a 3D grating-based ONN architecture
using time-wavelength-spatial domain data flows with
parallel operations in 16 space-degrees of freedom to
improve the output capacity and energy efficiency.
We experimentally demonstrate a parallel matrix-
matrix multiplication processor using 4x4 input and
output fiber arrays with 16 channel frequency comb
lines of 7 different wavelengths, 32 broadband LiNbO,
intensity modulators for weight matrix and input
matrix encoding, a blazed reflective grating for low
loss beam routing, and 16 analog time integrators for
signal accumulation and network scaling, yielding a
total operation-throughput of 64 MACs/shot with a
high bit precision of 8-bits.
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200 mm Wafer Diameter Process of Pd/PSG/WO3 Protonic Synapses for Analog

Deep Learning

D. Shen, J. A. del Alamo
Sponsorship: MIT-IBM Watson Al Lab

To solve the overcoming computational bottlenecks
for deep learning, analog deep learning accelerators
process information locally using special-purpose de-
vices for matrix multiplication calculations and outer
product updates. Among them, Electrochemical Ran-
dom-Access Memories modulate channel resistance by
ionic exchange between a semiconductor channel and
a gate reservoir via an electrolyte. This design aims to
enable neural network training with enhanced energy
efficiency, non-volatility, and low latency.

PSG
WO,
Al,O,
Si0,/Si

Our research focuses on proton-based ionic synaps-
es featuring in-situ hydrogenated H WO, (as channel)
and PdH, (as gate reservoir), and phosphosilicate glass
(PSG) (as electrolyte). In a close collaboration with IBM
Research, we have fabricated devices on a 200-mm wa-
fer from IBM Research using a CMOS back-end-of-line
compatible process. We have successfully demonstrat-
ed linear and symmetrical channel conductance mod-
ulation under different voltage pulses across gate and
channel.
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A Figure 1: (8) Schematic of Pd/PSG/WOj, protonic synapse fabricated in a joint MIT-IBM Research process on 200-mm
wafers. (b) Conductance modulation under voltage pulses from 5V to 9 V with a width of 20 us that are fired every 1s.
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Tailor Swiftiles: Accelerating Sparse Tensor Algebra by Overbooking Buffer Capacity

Z.Y.Xue, Y. N. Wu, J. S. Emer, V. Sze

Sponsorship: MIT AI Hardware Program, Mathworks Fellowship, NSERC PGS-D

Many applications operate on tensor data that has
high sparsity (i.e., many zeros) with large variations
sparsity between regions of a tensor. Prior sparse ten-
sor algebra accelerators partition the tensor into equal
shape tiles that all fit in a buffer, limiting utilization of
buffer resources for more sparse tiles. Our key insight
is that we can overbook the buffer by allocating tiles
that occasionally exceed the capacity of the buffer. We
propose to combine a low-overhead data orchestration
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mechanism, Tailors, with a statistical tiling approach,
Swiftiles, in order to support tiles that overbook the
buffer and improve utilization of buffer resources and
thus improve on-chip data reuse. Across a suite of 22
sparse tensor algebra workloads, we show that Tailors
and Swiftiles introduce an average speedup 2.3x over
an existing sparse tensor algebra accelerator with op-
timized tiling.

109



Stable and Accurate Nano-Resistor for Reliable Fixed Al Inference Tasks

G. Lee, M. Song, K. Kwon, J. Kim
Sponsorship: Samsung Semiconductor Fellowship (3965323)

As artificial intelligence (AI) technology continues to
advance in everyday applications, there is a rising de-
mand for seamless, private, and sophisticated Al func-
tionalities. On-device Al solutions, embedded within
commercial mobile devices, eliminate the need for
external server communication, thereby enhancing
response times and data privacy. However, existing
on-device Al technologies are limited by substantial
power consumption and insufficient computational
capacity to support advanced generative Al models.
Memristor-based analog Al accelerators have emerged
as a potential solution to the von Neumann bottleneck,
a major limitation in achieving greater speed and en-
ergy efficiency in AI computing. Despite their promise,
memristors are hindered by issues with conductance
state stability and the complexity of required pro-
gramming algorithms and circuitry, which constrains

110 Neuromorphic Devices & Al Hardware Accelerators

their widespread adoption in industry. In this study,
we introduce an ultra-reliable nano-resistor array
that enables robust analog Al inference for specific
tasks, minimizing the dependence on complex circuit-
ry. Conductance states are fixed and geometrically
defined through a single micro-nano patterning pro-
cess, removing the need for stochastic programming
and reducing the complexity of programming circuits
typically required in memristor-based accelerators. We
achieved 6.8-bit programming accuracy and stable 8-bit
conductance levels. Additionally, experimental results
from multiply-accumulate (MAC) operations show the
feasibility of achieving 8.2-bit accuracy in a passive
28x28 array with simple circuit-level compensation.
This nano-resistor array offers a reliable and precise
platform for Al computing, tailored for daily Al tasks
while reducing peripheral circuitry.
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DuoAttention: Efficient Long-Context LLM Inference with Retrieval and Streaming

Heads

G. Xiao, J. Tang, J. Zuo, J. Guo, S. Yang, H. Tang, Y. Fu, S. Han

Sponsorship: National Science Foundation, MIT-IBM Watson AI Lab, MIT Al Hardware Program, Amazon, Samsung,

Hyundai

Deploying long-context large language models (LLMs)
is essential but poses significant computational and
memory challenges. Caching all Key and Value (KV)
states across all attention heads consumes substan-
tial memory. Existing KV cache pruning methods ei-
ther damage the long-context capabilities of LLMs
or offer only limited efficiency improvements. In this
paper, we identify that only a fraction of attention
heads, a.k.a, Retrieval Heads, are critical for process-
ing long contexts and require full attention across all
tokens. In contrast, all other heads, which primarily
focus on recent tokens and attention sinks--referred
to as Streaming Heads--do not require full attention.
Based on this insight, we introduce DuoAttention, a
framework that only applies a full KV cache to retriev-
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al heads while using a light-weight, constant-length KV
cache for streaming heads, which reduces both LLM's
decoding and pre-filling memory and latency without
compromising its long-context abilities. DuoAttention
uses a lightweight, optimization-based algorithm with
synthetic data to identify retrieval heads accurately.
Our method significantly reduces long-context infer-
ence memory by up to 2.55x for MHA and 1.67x for GQA
models while speeding up decoding by up to 2.18x and
1.50x and accelerating pre-filling by up to 1.73x and 1.63x
for MHA and GQA models, respectively, with minimal
accuracy loss compared to full attention. Notably, com-
bined with quantization, DuoAttention enables Llama-
3-8B decoding with 3.3 million context length on a sin-
gle A100 GPU.
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Quest: Query-Aware Sparsity for Efficient Long-Context LLM Inference

J.Tang, Y. Zhao, K. Zhu, G. Xiao, B. Kasikci, S. Han
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As the demand for long-context large language mod-
els (LLMs) increases, models with context windows
of up to 1M tokens are becoming prevalent. However,
long-context LLM inference is challenging since the in-
ference speed decreases significantly as the sequence
length grows. This slowdown is primarily caused by
loading a large KV cache during attention. Previous
works have shown that a small portion of critical to-
kens will dominate the attention outcomes. However,
we observe the criticality of a token highly depends on

(a) Dense Attention

(b) Query-Agnostic Sparsity
(StreamingLLM, H,0, etc.)

the query. To this end, we propose Quest, a query-aware
KV cache selection algorithm. Quest keeps track of the
minimal and maximal Key values in KV cache pages
and estimates the criticality of a given page using Que-
ry. By only loading the Top-K critical KV cache pages,
Quest significantly speeds up attention without sacri-
ficing accuracy. We show that Quest can achieve up to
2.23x attention speedup, which reduces inference laten-
cy by 7.03x with negligible accuracy loss.

(c) Query-Aware

Sparsity (ours)
I

Once a token is
|| evicted, it cannot be
attended anymore.

Current

Keeps all

An evicted token

|| can still be attended
by future tokens.

Keeps tokens based on
past information.
O(L)v Acc:2% X

contextual tokens.
O(T)x Acc: 100%Y

Keeps tokens based
on current tokens.

O(L) v Acc: 100% v

A Figure 1: Quest Algorithm Overview.
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SORBET: Secure Off-chip Memory Interface for Deep Neural Network Accelerators

K.Lee, G. Das, D. Han, A. P. Chandrakasan
Sponsorship: Samsung Electronics

As deep neural networks (DNNs) are deployed in high-
stakes applications, ensuring their confidentiality and
integrity becomes crucial. Trusted execution environ-
ments (TEEs) offer a potential solution by cryptograph-
ically encrypting and authenticating all data traffic to
and from DNN accelerators without relying on off-chip
hardware or system software to provide security. How-
ever, hardware memory encryption and authentication
for DNN accelerators is challenging due to the large
memory footprints of DNNs and the impact of cryp-
tographic operations on the data access pattern of the
accelerators. To address these challenges, we present
SORBET, a secure off-chip memory interface for DNN
accelerators. SORBET efficiently manages the altered
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data access patterns resulting from cryptographic au-
thentication and leverages lightweight cryptography
to minimize overhead. Also, we designed our DNN ac-
celerator to support fused-layer processing, a technique
that reduces the overall off-chip data traffic, to allevi-
ate pressure on the cryptographic engine. Our imple-
mentation of a secure DNN accelerator equipped with
SORBET supports memory encryption and authenti-
cation with only 1-22% performance overhead, 5.6-7.9%
of the chip area, and 18.4% energy overhead. These re-
sults are verified with an ASIC implementation using
TSMC 28nm technology. Overall, we show that memo-
ry security of TEEs can be practically achieved for re-
source-constrained DNN accelerators.
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LoopTree: Exploring the Fused-layer Dataflow Accelerator Design Space

M. Gilbert, Y. N. Wu, V. Sze, J. S. Emer
Sponsorship: MIT AI Hardware Program

Deep neural network (DNN) accelerators often pro-
cess DNNs one layer at a time, keeping intermediate
data in off-chip DRAM. However, DRAM data transfers
consume more energy than on-chip transfers and may
increase latency due to limited DRAM bandwidth. Re-
cent work has proposed fused-layer accelerators, which
do not transfer intermediate data to/from DRAM but
must recompute or retain data on-chip. This reten-
tion-recomputation trade-off results from the order
of operations (dataflow) and the data tiles retained
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on-chip (partitioning). However, prior work has only
explored a subset of this design space. We propose (1)
an expanded design space, and (2) a model, LoopTree,
to evaluate the latency and energy consumption of ac-
celerators in this design space. We validate LoopTree
against prior architectures (worst-case 4% error). Fi-
nally, we show how exploring this larger space results
in more efficient designs (e.g., up to 10= buffer capacity
reduction to achieve the same off-chip transfers).
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SVDQuant: Absorbing Outliers by Low-Rank Components for 4-Bit Diffusion

Models

M. Lj, Y.Lin, Z. Zhang, T. Cai, X. Li, J. Guo, E. Xie, C. Meng, J.-Y. Zhu, S. Han
Sponsorship: NSF, MIT-IBM Watson Al Lab, MIT Al Hardware Program, Amazon, Samsung, Hyundai

Diffusion models have been proven highly effective
at generating high-quality images. However, as these
models grow larger, they require significantly more
memory and suffer from higher latency, posing sub-
stantial challenges for deployment. In this work, we
aim to accelerate diffusion models by quantizing their
weights and activations to 4 bits. At such an aggressive
level, both weights and activations are highly sensitive,
where conventional post-training quantization meth-
ods for large language models like smoothing become
insufficient. To overcome this limitation, we propose
SVDQuant, a new 4-bit quantization paradigm. Differ-
ent from smoothing which redistributes outliers be-
tween weights and activations, our approach absorbs
these outliers using a low-rank branch. We first consol-
idate the outliers by shifting them from activations to
weights, then employ a high-precision low-rank branch
to take in the weight outliers with Singular Value De-

FLUX.1-dev BF16
(25 Steps)
DiT Memory: 22.7 GiB
E2E Latency: 111.7 s

NF4 (W4A16)

LPIPS: 0.272
DiT Memory: 6.9 GiB (3.3x Less)
E2E Latency: 38.6 s (2.9% Faster)

-
o4 SVDQuant

is lite

and fast

PixArt-X FP16
(20 Steps)

ViDiT-Q (W4A8)
LPIPS: 0.573

E2E Latency: 12.5 s (8.9% Faster)

composition (SVD). This process eases the quantization
on both sides. However, naively running the low-rank
branch independently incurs significant overhead due
to extra data movement of activations, negating the
quantization speedup. To address this, we co-design an
inference engine Nunchaku that fuses the kernels of
the low-rank branch into those of the low-bit branch
to cut off redundant memory access. It can also seam-
lessly support off-the-shelf low-rank adapters (LoRAS)
without the need for re-quantization. Extensive experi-
ments on SDXL, PixArt-Y, and FLUX.1 validate the effec-
tiveness of SVDQuant in preserving image quality. We
reduce the memory usage for the 12B FLUX.1 models by
3.5x, achieving 3.0x speedup over the 4-bit weight-on-
ly quantized baseline on the 16GB laptop 4090 GPU,
paving the way for more interactive applications on
PCs. Our quantization library and inference engine are
open-sourced.

Naive INT4 (W4A4)
LPIPS: 0.327
DiT Memory: 6.3 GiB (3.6x Less)

SVDQuant INT4 (W4A4)
LPIPS: 0.254
DiT Memory: 6.5 GiB (3.5% Less)
E2E Latency: 12.9 s (8.7% Faster)
i = -

Naive INT4 (W4A4)
LPIPS: 0.708

SVDQuant INT4 (W4A4)
LPIPS: 0.326

Prompt: medium rare steak tenderloin super tasty photo.

A Figure 1: SVDQuant is a post-training quantization technique for 4-bit weights and activations that well main-
tains visual fidelity. On 12B FLUX.1-dev, it achieves 3.6 memory reduction compared to the BF16 model. By elim-
inating CPU offloading, it offers 8.7x speedup over the 16-bit model when on a 16GB laptop 4090 GPU, 3x faster
than the NF4 WAAT6 baseline. On PixArt-2, it demonstrates significantly superior visual quality over other WA4A4

or even W4A8 baselines. "E2E" means the end-to-end latency including the text encoder and VAE decoder.
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LongVILA: Scaling Long-Context Visual Language Models for Long Videos

Q.Hu, H. Tang, S. Yang, S. Han

Long-context capability is critical for multi-modal foun-
dation models, especially for long video understand-
ing. We introduce LongVILA, a full-stack solution for
long-context visual-language models by co-designing
the algorithm and system. For model training, we up-
grade existing VLMs to support long video understand-
ing by incorporating two additional stages, ie. long
context extension and long video supervised fine-tun-
ing. However, training on long video is computationally
and memory intensive. We introduce the long-context
Multi-Modal Sequence Parallelism (MM-SP) system
that efficiently parallelizes long video training and
inference, enabling 2M context length training on 256
GPUs without any gradient checkpointing. LongVILA
efficiently extends the number of video frames of VILA
from 8 to 2048, MM-SP is 2.1x - 5.7x faster than ring style
sequence parallelism and 1.1x - 1.4x faster than Mega-
tron with a hybrid context and tensor parallelism.
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QServe: WA4A8KV4 Quantization and System Co-design for Efficient LLM Serving

Y. Lin, H. Tang, S. Yang, Z. Zhang, G. Xiao, C. Gan, S. Han
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Quantization can accelerate large language model
(LLM) inference. Going beyond INT8 quantization, the
research community is actively exploring even lower
precision, such as INT4. Nonetheless, state-of-the-art
INT4 quantization techniques only accelerate low-
batch, edge LLM inference, failing to deliver perfor-
mance gains in large-batch, cloud-based LLM serving.
We uncover a critical issue: existing INT4 quantization
methods suffer from significant runtime overhead
(20-90%) when dequantizing either weights or partial
sums on GPUs. To address this challenge, we intro-
duce QoQ, a W4A8KV4 quantization algorithm with
4-bit weight, 8-bit activation, and 4-bit KV cache. QoQ
stands for quattuor-octo-quattuor, which represents
4-8-4 in Latin. QoQ is implemented by the QServe in-
ference library that achieves measured speedup. The
key insight driving QServe is that the efficiency of
LLM serving on GPUs is critically influenced by oper-
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ations on low-throughput CUDA cores. Building upon
this insight, in QoQ algorithm, we introduce progres-
sive quantization that can allow low dequantization
overhead in W4A8 GEMM. Additionally, we develop
SmoothAttention to effectively mitigate the accuracy
degradation incurred by 4-bit KV quantization. In the
QServe system, we perform compute-aware weight
reordering and take advantage of register-level paral-
lelism to reduce dequantization latency. We also make
fused attention memory-bound, harnessing the perfor-
mance gain brought by KV4 quantization. As a result,
QServe improves the maximum achievable serving
throughput of Llama-3-8B by 1.2x on A100, 1.4x on L40S;
and Qwenl.5-72B by 2.4x on A100, 3.5x on L40S, com-
pared to TensorRT-LLM. Remarkably, QServe on L40S
GPU can achieve even higher throughput than Tensor-
RT-LLM on A100. Thus, QServe effectively reduces the
dollar cost of LLM serving by 3x.
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