
Computing at the edge (near the sensor) is preferred over the cloud due to privacy and/or latency concerns for a wide range of applications including robotics/drones, self-driving cars, smart Internet of Things, and portable/wearable electronics. However, at the edge there are often stringent constraints on energy consumption and cost in addition to the throughput and accuracy requirements of the application. In this talk, we will describe how joint algorithm and hardware design can be used to reduce energy consumption while delivering real-time and robust performance for applications including deep learning, computer vision, autonomous navigation/exploration and video/image processing.