
Spin Transfer Torque Magnetic Random Access Memory (STT-MRAM) is a type of emerging memory which holds the promise of high speed, high endurance, non-volatility, and good scalability. Since the theoretical prediction of the STT switching mechanism in 1996, significant progress has been made in the field, largely through materials innovations. In this talk, I will review the key materials discoveries that enabled the advancement of STT-MRAM technology. This includes the theoretical prediction and experimental realization of large tunneling magneto-resistance (TMR) with MgO tunnel barrier and the discovery of CoFeB based materials with interfacial perpendicular magnetic anisotropy (iPMA). This talk will also discuss our recent results at IBM on methods to lower the switching current of Spin-Transfer-Torque MRAM and achieve low write-error-rate by using optimized magnetic materials.